In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: mass concentration, molar concentration, number concentration, and volume concentration. The concentration can refer to any kind of chemical mixture, but most frequently refers to solutes and Solvent in solutions. The molar (amount) concentration has variants, such as normal concentration and osmotic concentration. Dilution is reduction of concentration, e.g., by adding solvent to a solution. The verb means to increase concentration, the opposite of dilute.
Etymology
Concentration-,
concentratio, action or an act of coming together at a single place, bringing to a common center, was used in
Neo-Latin in 1550 or earlier, similar terms attested in Italian (1589), Spanish (1589), English (1606), French (1632).
Qualitative description
Often in informal, non-technical language, concentration is described in a
qualitative data way, through the use of adjectives such as "dilute" for solutions of relatively low concentration and "concentrated" for solutions of relatively high concentration. To
concentrate a solution, one must add more
solute (for example, alcohol), or reduce the amount of
solvent (for example, water). By contrast, to
dilute a solution, one must add more solvent, or reduce the amount of solute. Unless two substances are
miscible, there exists a concentration at which no further solute will dissolve in a solution. At this point, the solution is said to be saturated. If additional solute is added to a saturated solution, it will not dissolve, except in certain circumstances, when
supersaturation may occur. Instead, phase separation will occur, leading to coexisting phases, either completely separated or mixed as a suspension. The point of saturation depends on many variables, such as ambient temperature and the precise chemical nature of the solvent and solute.
Concentrations are often called levels, reflecting the mental schema of ordinate of a chart, which can be height (for example, "high serum levels of bilirubin" are concentrations of bilirubin in the blood serum that are greater than normal).
Quantitative notation
There are four quantities that describe concentration:
Mass concentration
The mass concentration
is defined as the
mass of a constituent
divided by the volume of the mixture
:
The SI unit is kg/m3 (equal to g/L).
Molar concentration
The molar concentration
is defined as the amount of a constituent
(in moles) divided by the volume of the mixture
:
The SI unit is mol/m3. However, more commonly the unit mol/L (= mol/dm3) is used.
Number concentration
The number concentration
is defined as the number of entities of a constituent
in a mixture divided by the volume of the mixture
:
The SI unit is 1/m3.
Volume concentration
The
volume concentration (not to be confused with
volume fraction) is defined as the volume of a constituent
divided by the volume of the mixture
:
Being dimensionless, it is expressed as a number, e.g., 0.18 or 18%.
There seems to be no standard notation in the English literature. The letter used here is normative in German literature (see Volumenkonzentration).
Related quantities
Several other quantities can be used to describe the composition of a mixture. These should
not be called concentrations.
Normality
Normality is defined as the molar concentration
divided by an equivalence factor
. Since the definition of the equivalence factor depends on context (which reaction is being studied), the
IUPAC and
NIST discourage the use of normality.
Molality
The molality of a solution
is defined as the amount of a constituent
(in moles) divided by the mass of the solvent
(
not the mass of the solution):
The SI unit for molality is mol/kg.
Mole fraction
The mole fraction
is defined as the amount of a constituent
(in moles) divided by the total amount of all constituents in a mixture
:
The SI unit is mol/mol. However, the deprecated parts-per notation is often used to describe small mole fractions.
Mole ratio
The mole ratio
is defined as the amount of a constituent
divided by the total amount of all
other constituents in a mixture:
If is much smaller than , the mole ratio is almost identical to the mole fraction.
The SI unit is mol/mol. However, the deprecated parts-per notation is often used to describe small mole ratios.
Mass fraction
The mass fraction
is the fraction of one substance with mass
to the mass of the total mixture
, defined as:
The SI unit is kg/kg. However, the deprecated parts-per notation is often used to describe small mass fractions.
Mass ratio
The mass ratio
is defined as the mass of a constituent
divided by the total mass of all
other constituents in a mixture:
If is much smaller than , the mass ratio is almost identical to the mass fraction.
The SI unit is kg/kg. However, the deprecated parts-per notation is often used to describe small mass ratios.
Dependence on volume and temperature
Concentration depends on the variation of the volume of the solution with temperature, due mainly to thermal expansion.
Table of concentrations and related quantities
|
|
mass concentration | or | | kg/m3 | g/100mL (= g/dL) |
molar concentration | | | mol/m3 | M (= mol/L) |
number concentration | | | 1/m3 | 1/cm3 |
volume concentration | | | m3/m3 | |
|
normality | | | mol/m3 | M (= mol/L) |
molality | | | mol/kg | m |
mole fraction | | | mol/mol | ppm, ppb, ppt |
mole ratio | | | mol/mol | ppm, ppb, ppt |
mass fraction | | | kg/kg | ppm, ppb, ppt |
mass ratio | | | kg/kg | ppm, ppb, ppt |
volume fraction | | | m3/m3 | ppm, ppb, ppt |
See also
External links